If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-24x-9=0
a = 2; b = -24; c = -9;
Δ = b2-4ac
Δ = -242-4·2·(-9)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-18\sqrt{2}}{2*2}=\frac{24-18\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+18\sqrt{2}}{2*2}=\frac{24+18\sqrt{2}}{4} $
| 2r−5r=–3r | | 8x-14=10x+5 | | 18=-5(9v-3) | | 7(5n-4)-10(3n-5)=0 | | 7^3m-4=1 | | 7(5n-4)-10(3n-5)=1 | | 2x43=16* | | 3k-4+5=29 | | (4-2)/3=3/4-5z/6 | | 5/7y=1/14 | | (z^2-2z+2)(z^2+6z+13)=0 | | x4+-2x+-10=0 | | (x+6)/2-10=20 | | (-4x=3)(-2x8) | | 5(x–6)=6 | | 15-7x=8,x= | | -7/6y+10,5=(y+4)/(-y+4) | | r-27=-43 | | 3,5(x−2)(5−4x)=0 | | m+31=23 | | 4.9=0+x(0.90) | | 5m+9=32 | | 3(k-8=-32+4k | | 1/4y^2-8y=3/2 | | (x+3)*3=42 | | 29+2y+1=90 | | 2*(x-8)=16 | | -(x+2)=3(x+2) | | 2|n+7|=|4n-8| | | -4x+2x=7x | | 3x+17=2×+14 | | 9(x-7)=-x |